NOISE-TOLERANT HYPERSPECTRAL IMAGE CLASSIFICATION USING DISCRETE COSINE TRANSFORM and CONVOLUTIONAL NEURAL NETWORKS

2Citations
Citations of this article
9Readers
Mendeley users who have this article in their library.

Abstract

Hyperspectral image classification has drawn significant attention in the recent years driven by the increasing abundance of sensor-generated hyper- and multi-spectral data, combined with the rapid advancements in the field of machine learning. A vast range of techniques, especially involving deep learning models, have been proposed attaining high levels of classification accuracy. However, many of these approaches significantly deteriorate in performance in the presence of noise in the hyperspectral data. In this paper, we propose a new model that effectively addresses the challenge of noise residing in hyperspectral images. The proposed model, which will be called DCT-CNN, combines the representational power of Convolutional Neural Networks with the noise elimination capabilities introduced by frequency-domain filtering enabled through the Discrete Cosine Transform. In particular, the proposed method entails the transformation of pixel macroblocks to the frequency domain and the discarding of information that corresponds to the higher frequencies in every patch, in which pixel information of abrupt changes and noise often resides. Experiment results in Indian Pines, Salinas and Pavia University datasets indicate that the proposed DCT-CNN constitutes a promising new model for accurate hyperspectral image classification offering robustness to different types of noise, such as Gaussian and salt and pepper noise.

Cite

CITATION STYLE

APA

Voulodimos, A., Fokeas, K., Doulamis, N., Doulamis, A., & Makantasis, K. (2020). NOISE-TOLERANT HYPERSPECTRAL IMAGE CLASSIFICATION USING DISCRETE COSINE TRANSFORM and CONVOLUTIONAL NEURAL NETWORKS. In International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives (Vol. 43, pp. 1281–1287). International Society for Photogrammetry and Remote Sensing. https://doi.org/10.5194/isprs-archives-XLIII-B2-2020-1281-2020

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free