Archaeologists have explored a wide range of topics regarding archaeological stone tools and their connection to past human lifeways through experimentation. Controlled experimentation systematically quantifies the empirical relationships among different flaking variables under a controlled and reproducible setting. This approach offers a platform to generate and test hypotheses about the technological decisions of past knappers from the perspective of basic flaking mechanics. Over the past decade, Harold Dibble and colleagues conducted a set of controlled flaking experiments to better understand flake variability using mechanical flaking apparatuses and standardized cores. Results of their studies underscore the dominant impact of exterior platform angle and platform depth on flake size and shape and have led to the synthesis of a flake formation model, namely the EPA-PD model. However, the results also illustrate the complexity of the flake formation process through the influence of other parameters such as core surface morphology and force application. Here we review the work of Dibble and colleagues on controlled flaking experiments by summarizing their findings to date. Our goal is to synthesize what was learned about flake variability from these controlled experiments to better understand the flake formation process. With this paper, we are including all of the data produced by these prior experiments and an explanation of the data in the Supplementary Information.
CITATION STYLE
Li, L., Lin, S. C., McPherron, S. P., Abdolahzadeh, A., Chan, A., Dogandžić, T., … Dibble, H. L. (2023). A Synthesis of the Dibble et al. Controlled Experiments into the Mechanics of Lithic Production. Journal of Archaeological Method and Theory, 30(4), 1284–1325. https://doi.org/10.1007/s10816-022-09586-2
Mendeley helps you to discover research relevant for your work.