Judging in competitive sports is prone to errors arising from the inherent limitations to humans’ cognitive and sensorial capabilities and from various potential sources of bias that influence judges. Artistic gymnastics offers a case in point: given the complexity of scoring and the ever-increasing speed of athletes’ performance, systems powered by artificial intelligence (AI) seem to promise benefits for the judging process and its outcomes. To characterize today’s human judging process for artistic gymnastics and examine contrasts against an AI-powered system currently being introduced in this context, an in-depth case study analyzed interview data from various stakeholder groups (judges, gymnasts, coaches, federations, technology providers, and fans). This exploratory study unearthed several paradoxical tensions accompanying AI-based evaluations in this setting. The paper identifies and illustrates tensions of this nature related to AI-powered systems’ accuracy, objectivity, explainability, relationship with artistry, interaction with humans, and consistency.
CITATION STYLE
Mazurova, E., Standaert, W., Penttinen, E., & Tan, F. T. C. (2022). Paradoxical Tensions Related to AI-Powered Evaluation Systems in Competitive Sports. Information Systems Frontiers, 24(3), 897–922. https://doi.org/10.1007/s10796-021-10215-8
Mendeley helps you to discover research relevant for your work.