The effect of drought stress on yield, leaf gaseous exchange and chlorophyll fluorescence of dry beans (Phaseolus vulgaris L.)

190Citations
Citations of this article
231Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Global food production relies on irrigation, especially in low rainfall areas such as South Africa. The study was conducted to determine the effect of drought stress on growth, yield, leaf gaseous exchange and chlorophyll fluorescence parameters of dry bean under field conditions and the after effects of drought stress upon lifting drought stress. A rain shelter field trial was conducted at the Hatfield Experimental Farm of the University of Pretoria, Pretoria, South Africa. Dry bean cultivar DBS 360 was subjected to five levels of moisture stress arranged in a randomized complete block design with six replications. The plants were exposed to the following drought stress levels: the control: Irrigated to field capacity (S1), Withholding irrigation from 36 days after planting (DAP) for 24 days (S2), Withholding irrigation from 49 DAP for 24 days (S3), Withholding irrigation from 73 DAP to the end of the growing season (S4) and irrigated to field capacity on a fortnightly bases for the rest of the season from 36 DAP to the end of the growing season (S5).The results revealed that drought stress reduced dry matter production, leaf area index, number of pods per plant, number of seeds per plant, hundred seed weight and grain yield. Treatments S1, S4 and S5 produced statistically similar grain yield. Drought stress towards the end of the growing season may not cause serious harm in grain yield. Drought stress resulted in a reduction in photosynthetic rate, intercellular carbon dioxide concentration, stomatal conductance and transpiration. Chlorophyll fluorescence was also affected by drought stress. The highest WUE was found in the treatment which was irrigated on fortnightly bases from 36 DAP. This indicates that with appropriate irrigation it is possible to save water without a great yield loss in dry bean.

Cite

CITATION STYLE

APA

Mathobo, R., Marais, D., & Steyn, J. M. (2017). The effect of drought stress on yield, leaf gaseous exchange and chlorophyll fluorescence of dry beans (Phaseolus vulgaris L.). Agricultural Water Management, 180, 118–125. https://doi.org/10.1016/j.agwat.2016.11.005

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free