Effects of (R,R)- and (R,R/S,S)-Formoterol on Airway Relaxation and Contraction in an Experimental Rat Model

6Citations
Citations of this article
12Readers
Mendeley users who have this article in their library.

Abstract

Background: Racemic (R,R/S,S)-formoterol is a long-acting β-agonist composed of a 50:50 mixture of (R,R)- and (S,S)-enantiomers. Objective: The aim of this study was to determine whether (R,R)-formoterol and (R,R/S,S)-formoterol have differing effects on airway contraction and relaxation in vitro. Methods: Cylindrical airway segments 3-mm long were isolated from the mid-trachea of healthy Sprague-Dawley rats and placed in a modified Krebs-Henseleit solution. Dose-response curves of bethanechol-induced contraction (measured as milligrams of tension) and the concentration of bethanechol that elicited 50% to 75% of maximal contraction (EC50-75) were determined. The air-way cylinders were then precontracted with bethanechol at the EC50-75 and exposed to different concentrations of (R,R)-formoterol (0.0001-1.0 μM) or (R,R/S,S)-formoterol (0.0002-2.0 μM). Each concentration of the 2 formoterol formulations contained the same amount of (R,R)-enantiomer (eg, [R,R]-formoterol 0.0001 μM and [R,R/S,S]-formoterol 0.0002 1JM contained the same amount of [R,R]-enantiomer). The relaxation percentage in response to formoterol was calculated as a reduction in tension (in milligrams) in relation to baseline tension in the precontracted state, with each tracheal cylinder serving as its own control. To determine the effect of (R,R)-formoterol on airway contraction, tracheal cylinders were incubated with (R,R)- or (R,R/S,S)-formoterol before electrical field stimulation (EFS). Results: Tracheae from 56 three-week-old Sprague-Dawley rats were used in the study. The relaxation percentage of precontracted trachea was significantly greater after exposure to (R,R)-formoterol than to (R,R/S,S)-formoterol at a 2-fold higher concentration (P = 0.03; general linear model with repeated measures analysis comparing the 2 groups of animals). However, in a post hoc analysis, the mean (SE) relaxation percentage of precontracted trachea was significantly greater only after exposure to (R,R)-formoterol 0.01 μM than to (R,R/S,S)-formoterol 0.02 μM (15.6% [5.8%] vs 39.0% [5.6%]; P < 0.05, unpaired t test). EFS-induced airway contraction was significantly less in tracheal cylinders incubated in (R,R)-formoterol compared with those incubated in (R,R/S,S)-formoterol at a 2-fold higher concentration (P = 0.05; general linear model with repeated measures analysis comparing the 2 groups of animals). However, in the post hoc analysis, mean (SE) EFS-induced tracheal contraction was significantly less only in (R,R)-formoterol 0.01 μM compared with (R,R/S,S)-formoterol 0.02 μM at 10 V (1070 [55] mgvs 1225 [28] mg; P < 0.05, unpaired t test). Conclusion: We found that (R,R)-formoterol may induce greater relaxation of precontracted airway smooth muscle cells than (R,R/S,S)-formoterol and that (R,R)-formoterol may have a greater inhibitory effect on the endogenous cholinergic and excitatory nonadrenergic, noncholinergic contractile airway responses than (R,R/S,S)-formoterol. We speculate that the presence of the (S,S)-enantiomer in (R,R/S,S)-formoterol may impair airway relaxation of pre-contracted trachea in rats. © 2007 Excerpta Medica, Inc.

Cite

CITATION STYLE

APA

Mhanna, M. J., Koester, J. F., & Cohn, R. C. (2007). Effects of (R,R)- and (R,R/S,S)-Formoterol on Airway Relaxation and Contraction in an Experimental Rat Model. Current Therapeutic Research - Clinical and Experimental, 68(4), 249–261. https://doi.org/10.1016/j.curtheres.2007.08.005

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free