Efficacy of different protein descriptors in predicting protein functional families

Citations of this article
Mendeley users who have this article in their library.


BACKGROUND: Sequence-derived structural and physicochemical descriptors have frequently been used in machine learning prediction of protein functional families, thus there is a need to comparatively evaluate the effectiveness of these descriptor-sets by using the same method and parameter optimization algorithm, and to examine whether the combined use of these descriptor-sets help to improve predictive performance. Six individual descriptor-sets and four combination-sets were evaluated in support vector machines (SVM) prediction of six protein functional families.<br /><br />RESULTS: The performance of these descriptor-sets were ranked by Matthews correlation coefficient (MCC), and categorized into two groups based on their performance. While there is no overwhelmingly favourable choice of descriptor-sets, certain trends were found. The combination-sets tend to give slightly but consistently higher MCC values and thus overall best performance such that three out of four combination-sets show slightly better performance compared to one out of six individual descriptor-sets.<br /><br />CONCLUSION: Our study suggests that currently used descriptor-sets are generally useful for classifying proteins and the prediction performance may be enhanced by exploring combinations of descriptors.




Ong, S. A. K., Lin, H. H., Chen, Y. Z., Li, Z. R., & Cao, Z. (2007). Efficacy of different protein descriptors in predicting protein functional families. BMC Bioinformatics, 8. https://doi.org/10.1186/1471-2105-8-300

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free