An Efficient Methodology for Image Rich Information Retrieval

  • Jaid A
  • Savant K
  • Varma S
  • et al.
Citations of this article
Mendeley users who have this article in their library.


-Social multimedia sharing and hosting websites, such as Flickr and Facebook, contain billions of user-submitted images. Popular Internet commerce websites such as are also furnished with tremendous amounts of product-related images. In addition, images in such social networks are also accompanied by annotations, comments, and other information, thus forming heterogeneous image-rich information networks. In this paper, the concept of (heterogeneous) image-rich information network and the problem of how to perform information retrieval and recommendation in such networks is introduced. A fast algorithm, heterogeneous minimum order k-SimRank (HMok-SimRank) is proposed to compute link-based similarity in weighted heterogeneous information networks. Then, we propose an algorithm Integrated Weighted Similarity Learning (IWSL) to account for both link-based and content based similarities by considering the network structure and mutually reinforcing link similarity and feature weight learning. Both local and global feature learning methods are designed. Experimental results on Flickr and Amazon data sets show that our approach is significantly better than traditional methods in terms of both relevance and speed. A new product search and recommendation system for e-commerce has been implemented based on our algorithm.




Jaid, A., Savant, K., Varma, S., Jat, P., & Sushama Shinde, P. (2015). An Efficient Methodology for Image Rich Information Retrieval. IJCSN International Journal of Computer Science and Network, 4(1), 2277–5420. Retrieved from

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free