Electric field induced deformations of biomimetic fluid membranes

Citations of this article
Mendeley users who have this article in their library.


We investigate the coupling between the mechanics of fluid membranes and transmembrane electric potential using as a model system the giant vesicle (closed bilayer membrane made of lipids or polymers). In DC electric pulses, an initially quasispherical gi- ant vesicle can become a spherocylinder. The edge between the spherical cap and the cylindrical section appears to separate porated (conducting) and intact (insulating) regions of the membrane. The location of the edge provides a quick estimate for the critical poration voltage of a membrane. A uniform AC electric field affects membrane fluctuations, increasing the effective bending rigid- ity and decreasing the effective membrane tension. Moreover, a very deflated vesicle can become an asymmetric dumbbell. In the case of multicomponent membranes, the miscibility temperature (at which domains form in an initially homogeneous membrane) decreases with applied electric field strength.




Salipante, P. F., Shapiro, M. L., & Vlahovska, P. M. (2015). Electric field induced deformations of biomimetic fluid membranes. In Procedia IUTAM (Vol. 16, pp. 60–69). Elsevier B.V. https://doi.org/10.1016/j.piutam.2015.03.008

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free