EL-labelings, supersolvability and 0-Hecke algebra actions on posets

20Citations
Citations of this article
6Readers
Mendeley users who have this article in their library.

Abstract

It is well known that if a finite graded lattice of rank n is supersolvable, then it has an EL-labeling where the labels along any maximal chain form a permutation. We call such a labeling an Sn EL-labeling and we show that a finite graded lattice of rank n is supersolvable if and only if it has such a labeling. We next consider finite graded posets of rank n with 0̂ and 1̂ that have an Sn EL-labeling. We describe a type A 0-Hecke algebra action on the maximal chains of such posets. This action is local and gives a representation of these Hecke algebras whose character has characteristic that is closely related to Ehrenborg's flag quasisymmetric function. We ask what other classes of posets have such an action and in particular we show that finite graded lattices of rank n have such an action if and only if they have an Sn EL-labeling. © 2003 Elsevier Science (USA). All rights reserved.

Cite

CITATION STYLE

APA

McNamara, P. (2003). EL-labelings, supersolvability and 0-Hecke algebra actions on posets. Journal of Combinatorial Theory. Series A. Academic Press Inc. https://doi.org/10.1016/S0097-3165(02)00019-5

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free