Emerging roles of PGE2 receptors in models of neurological disease

Citations of this article
Mendeley users who have this article in their library.
Get full text


This review presents an overview of the emerging field of prostaglandin signaling in neurological diseases, focusing on PGE2 signaling through its four E-prostanoid (EP) receptors. A large number of studies have demonstrated a neurotoxic function of the inducible cyclooxygenase COX-2 in a broad spectrum of neurological disease models in the central nervous system (CNS), from models of cerebral ischemia to models of neurodegeneration and inflammation. Since COX-1 and COX-2 catalyze the first committed step in prostaglandin synthesis, an effort is underway to identify the downstream prostaglandin signaling pathways that mediate the toxic effect of COX-2. Recent epidemiologic studies demonstrate that chronic COX-2 inhibition can produce adverse cerebrovascular and cardiovascular effects, indicating that some prostaglandin signaling pathways are beneficial. Consistent with this concept, recent studies demonstrate that in the CNS, specific prostaglandin receptor signaling pathways mediate toxic effects in brain but a larger number appear to mediate paradoxically protective effects. Further complexity is emerging, as exemplified by the PGE2 EP2 receptor, where cerebroprotective or toxic effects of a particular prostaglandin signaling pathway can differ depending on the context of cerebral injury, for example, in excitotoxicity/hypoxia paradigms versus inflammatory-mediated secondary neurotoxicity. The divergent effects of prostaglandin receptor signaling will likely depend on distinct patterns and dynamics of receptor expression in neurons, endothelial cells, and glia and the specific ways in which these cell types participate in particular models of neurological injury. © 2009 Elsevier Inc. All rights reserved.




Andreasson, K. (2010, April). Emerging roles of PGE2 receptors in models of neurological disease. Prostaglandins and Other Lipid Mediators. https://doi.org/10.1016/j.prostaglandins.2009.04.003

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free