18Citations
Citations of this article
10Readers
Mendeley users who have this article in their library.
Get full text

Abstract

The potential energy surface for the reaction of HOCO radicals with hydrogen atoms has been explored using the CCSD(T)/aug-cc-pVQZ ab initio method. Results show that the reaction occurs via a formic acid (HOC(O)H) intermediate, and produces two types of products: H(2)O+CO and H(2)+CO(2). Reaction enthalpies (0 K) are obtained as -102.0 kcalmol for the H(2)+CO(2) products, and -92.7 kcalmol for H(2)O+CO. Along the reaction pathways, there exists a nearly late transition state for each product channel. However, the transition states locate noticeably below the reactant asymptote. Direct ab initio dynamics calculations are also carried out for studying the kinetics of the H+HOCO reaction. At room temperature, the rate coefficient is predicted to be 1.07x10(-10)cm(3) molec(-1) s(-1) with a negligible activation energy E(a)=0.06 kcalmol, and the branching ratios are estimated to be 0.87 for H(2)+CO(2), and 0.13 for H(2)O+CO. In contrast, the product branching ratios have a strong T dependence. The branching ratio for H(2)O+CO could increase to 0.72 at T=1000 K.

Cite

CITATION STYLE

APA

Yu, H. G., & Francisco, J. S. (2008). Energetics and kinetics of the reaction of HOCO with hydrogen atoms. Journal of Chemical Physics, 128(24). https://doi.org/10.1063/1.2946696

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free