Evaluation of a Machine Learning-Based Prognostic Model for Unrelated Hematopoietic Cell Transplantation Donor Selection

3Citations
Citations of this article
11Readers
Mendeley users who have this article in their library.

Abstract

The survival of patients undergoing hematopoietic cell transplantation (HCT) from unrelated donors for acute leukemia exhibits considerable variation, even after stringent genetic matching. To improve the donor selection process, we attempted to create an algorithm to quantify the likelihood of survival to 5 years after unrelated donor HCT for acute leukemia, based on the clinical characteristics of the donor selected. All standard clinical variables were included in the model, which also included average leukocyte telomere length of the donor based on its association with recipient survival in severe aplastic anemia, and links to multiple malignancies. We developed a multivariate classifier that assigned a Preferred or NotPreferred label to each prospective donor based on the survival of the recipient. In a previous analysis using a resampling method, recipients with donors labeled Preferred experienced clinically compelling better survival compared with those labeled NotPreferred by the test. However, in a pivotal validation study in an independent cohort of 522 patients, the overall survival of the Preferred and NotPreferred donor groups was not significantly different. Although machine learning approaches have successfully modeled other biological phenomena and have led to accurate predictive models, our attempt to predict HCT outcomes after unrelated donor transplantation was not successful.

Cite

CITATION STYLE

APA

Buturovic, L., Shelton, J., Spellman, S. R., Wang, T., Friedman, L., Loftus, D., … Lee, S. J. (2018). Evaluation of a Machine Learning-Based Prognostic Model for Unrelated Hematopoietic Cell Transplantation Donor Selection. Biology of Blood and Marrow Transplantation, 24(6), 1299–1306. https://doi.org/10.1016/j.bbmt.2018.01.038

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free