Evidence for cosmic evolution in the spin of the most massive black holes

7Citations
Citations of this article
13Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

We use results from simulations of the production of magnetohydrodynamic jets around black holes to derive the cosmic spin history of the most massive black holes. We assume that the efficiency of jet production is a monotonic function of spin , as given by the simulations, and that the accretion flow geometry is similarly thick for quasars accreting close to the Eddington ratio and for low-excitation radio galaxies accreting at very small Eddington rates. We use the ratio of the comoving densities of the jet power to the radiated accretion power associated with supermassive black holes with m•≳ 108M⊙ to estimate the cosmic history of the characteristic spin The evolution of this ratio, which increases with decreasing z, is consistent with a picture where the z~ 0 active galactic nuclei have typically higher spins than those at z~ 2 (with typical values -0.95 and ~0.0-0.25, respectively). We discuss the implications in terms of the relative importance of accretion and mergers in the growth of supermassive black holes with m•≳ 108M⊙. © 2011 The Authors Monthly Notices of the Royal Astronomical Society © 2011 RAS.

Cite

CITATION STYLE

APA

Martínez-Sansigre, A., & Rawlings, S. (2011). Evidence for cosmic evolution in the spin of the most massive black holes. Monthly Notices of the Royal Astronomical Society: Letters, 418(1). https://doi.org/10.1111/j.1745-3933.2011.01148.x

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free