Ex Vivo Nicotine Stimulation Augments the Efficacy of Human Peripheral Blood Mononuclear Cell-Derived Dendritic Cell Vaccination via Activating Akt-S6 Pathway

11Citations
Citations of this article
17Readers
Mendeley users who have this article in their library.

Abstract

Our previous studies showed that α7 nicotinic acetylcholine receptor (nAchR) agonist nicotine has stimulatory effects on murine bone marrow-derived semimature DCs, but the effect of nicotine on peripheral blood mononuclear cell-(PBMC-) derived human semimature dendritic cells (hu-imDCs) is still to be clarified. In the present study, hu-imDCs (cultured 4 days) were conferred with ex vivo lower dose nicotine stimulation and the effect of nicotine on surface molecules expression, the ability of cross-presentation, DCs-mediated PBMC priming, and activated signaling pathways were determined. We could demonstrate that the treatment with nicotine resulted in increased surface molecules expression, enhanced hu-imDCs-mediated PBMC proliferation, upregulated release of IL-12 in the supernatant of cocultured DCs-PBMC, and augmented phosphorylation of Akt and ribosomal protein S6. Nicotine associated with traces of LPS efficiently enhanced endosomal translocation of internalized ovalbumin (OVA) and increased TAP-OVA colocalization. Importantly, the upregulation of nicotine-increased surface molecules upregulation was significantly abrogated by the inhibition of Akt kinase. These findings demonstrate that ex vivo nicotine stimulation augments hu-imDCs surface molecules expression via Akt-S6 pathway, combined with increased Ag-presentation result in augmented efficacy of DCs-mediated PBMC proliferation and Th1 polarization.

Cite

CITATION STYLE

APA

Wang, Y. Y., Yang, Y. W., You, X., Deng, X. Q., Hu, C. F., Zhu, C., … Gao, F. G. (2015). Ex Vivo Nicotine Stimulation Augments the Efficacy of Human Peripheral Blood Mononuclear Cell-Derived Dendritic Cell Vaccination via Activating Akt-S6 Pathway. Analytical Cellular Pathology, 2015. https://doi.org/10.1155/2015/741487

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free