Expert knowledge-guided segmentation system for brain MRI

90Citations
Citations of this article
77Readers
Mendeley users who have this article in their library.

Abstract

We describe an automated 3-D segmentation system for in vivo brain magnetic resonance images (MRI). Our segmentation method combines a variety of filtering, segmentation, and registration techniques and makes maximum use of the available a priori biomedical expertise, both in an implicit and an explicit form. We approach the issue of boundary finding as a process of fitting a group of deformable templates (simplex mesh surfaces) to the contours of the target structures. These templates evolve in parallel, supervised by a series of rules derived from analyzing the template's dynamics and from medical experience. The templates are also constrained by knowledge on the expected textural and shape properties of the target structures. We apply our system to segment four brain structures (corpus callosum, ventricles, hippocampus, and caudate nuclei) and discuss its robustness to imaging characteristics and acquisition noise. © 2004 Elsevier Inc. All rights reserved.

Cite

CITATION STYLE

APA

Pitiot, A., Delingette, H., Thompson, P. M., & Ayache, N. (2004). Expert knowledge-guided segmentation system for brain MRI. In NeuroImage (Vol. 23). https://doi.org/10.1016/j.neuroimage.2004.07.040

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free