Combining biochemical network motifs within an ARN-agent control system

Citations of this article
Mendeley users who have this article in their library.
Get full text


The Artificial Reaction Network (ARN) is an Artificial Chemistry representation inspired by cell signaling networks. The ARN has previously been applied to the simulation of the chemotaxis pathway of Escherichia coli and to the control of limbed robots. In this paper we discuss the design of an ARN control system composed of a combination of network motifs found in actual biochemical networks. Using this control system we create multiple cell-like autonomous agents capable of coordinating all aspects of their behavior, recognizing environmental patterns and communicating with other agent's stigmergically. The agents are applied to simulate two phases of the life cycle of Dictyostelium discoideum: vegetative and aggregation phase including the transition. The results of the simulation show that the ARN is well suited for construction of biochemical regulatory networks. Furthermore, it is a powerful tool for modeling multi agent systems such as a population of amoebae or bacterial colony. © 2013 IEEE.




Gerrard, C. E., McCall, J., Macleod, C., & Coghill, G. M. (2013). Combining biochemical network motifs within an ARN-agent control system. In 2013 13th UK Workshop on Computational Intelligence, UKCI 2013 (pp. 8–15).

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free