The c-Jun NH2-terminal kinase (JNK) pathway represents one subgroup of MAP kinases that are activated primarily by cytokines and exposure to environmental stress. Autophagy is a protein-degradation system characterized by the formation of double-membrane vacuoles termed autophagosomes. Autophagy-related gene beclin 1 plays a key role in autophagosome formation. However, the relationships between activation of JNK pathway, autophagy induction and Beclin 1 expression remain elusive. In this study, we used human cancer cell lines CNE2 and Hep3B to investigate the role of JNK-mediated Beclin 1 expression in ceramide-induced autophagic cell death. Ceramide-treated cells exhibited the characteristics of autophagy (that is, acidic vesicular organelle formation and the LC3-II generation). JNK was activated in these two cell lines exposed to ceramide and the phosphorylation of c-Jun also increased. In the meantime, we found that ceramide upregulated Beclin 1 expression in cancer cells. The upregulation of Beclin 1 expression could be blocked by SP600125 (a specific inhibitor of JNK) or a small interfering RNA (siRNA) directed against JNK1/2 or c-Jun. Chromatin immunoprecipitation and luciferase reporter analysis revealed that c-Jun was involved in the regulation of beclin 1 transcription in response to ceramide treatment. In addition, inhibition of JNK activity by SP600125 could inhibit autophagy induction by ceramide. Furthermore, Beclin 1 knockdown by siRNA also inhibited ceramide-mediated autophagic cell death. JNK-mediated Beclin 1 expression was also observed in topotecan-induced autophagy. These data suggest that activation of JNK pathway can mediate Beclin 1 expression, which plays a key role in autophagic cell death in cancer cells. © 2009 Macmillan Publishers Limited All rights reserved.
CITATION STYLE
Li, D. D., Wang, L. L., Deng, R., Tang, J., Shen, Y., Guo, J. F., … Zhu, X. F. (2009). The pivotal role of c-Jun NH2-terminal kinase-mediated Beclin 1 expression during anticancer agents-induced autophagy in cancer cells. Oncogene, 28(6), 886–898. https://doi.org/10.1038/onc.2008.441
Mendeley helps you to discover research relevant for your work.