Intraspecific differences in plant defense induction by fall armyworm strains

50Citations
Citations of this article
96Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The underlying adaptive mechanisms by which insect strains are associated with specific plants are largely unknown. In this study, we investigated the role of herbivore-induced defenses in the host plant association of fall armyworm (Spodoptera frugiperda) strains. We tested the expression of herbivore-induced defense-related genes and the activity of plant-defensive proteins in maize and Bermuda grass upon feeding by fall armyworm strains. The rice strain caterpillars induced greater accumulation of proteinase inhibitors in maize than the corn strain caterpillars. In Bermuda grass, feeding by the corn strain suppressed induction of trypsin inhibitor activity whereas the rice strain induced greater activity levels. Differences in elicitation of these plant defenses by the two strains seems to be due to differences in the activity levels of the salivary enzyme phospholipase C. The levels of plant defense responses were negatively correlated with caterpillar growth, indicating a fitness effect. Our results indicate that specific elicitors in the saliva of fall armyworm stains trigger differential levels of plant defense responses that affect caterpillar growth and thus may influence host plant associations in field conditions. The composition and secretion of plant defense elicitors may have a strong influence in the host plant association of insect herbivores.

Cite

CITATION STYLE

APA

Acevedo, F. E., Peiffer, M., Ray, S., Meagher, R., Luthe, D. S., & Felton, G. W. (2018). Intraspecific differences in plant defense induction by fall armyworm strains. New Phytologist, 218(1), 310–321. https://doi.org/10.1111/nph.14981

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free