Reproducible research, a growing movement within many scientific fields, including machine learning, would require the code, used to generate the experimental results, be published along with any paper. Probably the most compelling argument for this is that it is simply following good scientific practice, established over the years by the greats of science. The implication is that failure to follow such a practice is unscientific, not a label any machine learning researchers would like to carry. It is further claimed that misconduct is causing a growing crisis of confidence in science. That, without this practice being enforced, science would inevitably fall into disrepute. This viewpoint is becoming ubiquitous but here I offer a differing opinion. I argue that far from being central to science, what is being promulgated is a narrow interpretation of how science works. I contend that the consequences are somewhat overstated. I would also contend that the effort necessary to meet the movement’s aims, and the general attitude it engenders would not serve well any of the research disciplines, including our own.
CITATION STYLE
Drummond, C. (2018). Reproducible research: a minority opinion. Journal of Experimental and Theoretical Artificial Intelligence, 30(1), 1–11. https://doi.org/10.1080/0952813X.2017.1413140
Mendeley helps you to discover research relevant for your work.