Objective. Online monitoring of dose distribution in proton therapy is currently being investigated with the detection of prompt gamma (PG) radiation emitted from a patient during irradiation. The SiPM and scintillation Fiber based Compton Camera (SiFi-CC) setup is being developed for this aim. Approach. A machine learning approach to recognize Compton events is proposed, reconstructing the PG emission profile during proton therapy. The proposed method was verified on pseudo-data generated by a Geant4 simulation for a single proton beam impinging on a polymethyl methacrylate (PMMA) phantom. Three different models including the boosted decision tree (BDT), multilayer perception (MLP) neural network, and k-nearest neighbour (k-NN) were trained using 10-fold cross-validation and then their performances were assessed using the receiver operating characteristic (ROI) curves. Subsequently, after event selection by the most robust model, a software based on the List-Mode Maximum Likelihood Estimation Maximization (LM-MLEM) algorithm was applied for the reconstruction of the PG emission distribution profile. Main results. It was demonstrated that the BDT model excels in signal/background separation compared to the other two. Furthermore, the reconstructed PG vertex distribution after event selection showed a significant improvement in distal falloff position determination. Significance. A highly satisfactory agreement between the reconstructed distal edge position and that of the simulated Compton events was achieved. It was also shown that a position resolution of 3.5 mm full width at half maximum (FWHM) in distal edge position determination is feasible with the proposed setup.
CITATION STYLE
Kazemi Kozani, M., & Magiera, A. (2022). Machine learning-based event recognition in SiFi Compton camera imaging for proton therapy monitoring. Physics in Medicine and Biology, 67(15). https://doi.org/10.1088/1361-6560/ac71f2
Mendeley helps you to discover research relevant for your work.