High-gain leaky surface acoustic wave amplifier in epitaxial InGaAs on lithium niobate heterostructure

Citations of this article
Mendeley users who have this article in their library.


Active surface acoustic wave components have the potential to transform RF front ends by consolidating functionalities that currently occur across multiple chip technologies, leading to reduced insertion loss from converting back and forth between acoustic and electronic domains in addition to improved size and power efficiency. This letter demonstrates a significant advance in these active devices with a compact, high-gain, and low-power leaky surface acoustic wave amplifier based on the acoustoelectric effect. Devices use an acoustically thin semi-insulating InGaAs surface film on a YX lithium niobate substrate to achieve exceptionally high acoustoelectric interaction strength via an epitaxial In0.53Ga0.47As(P)/InP quaternary layer structure and wafer-scale bonding. We demonstrate 1.9 dB of gain per acoustic wavelength and power consumption of 90 mW for 30 dB of electronic gain. Despite the strong intrinsic leaky propagation loss, 5 dB of terminal gain is obtained for a semiconductor that is only 338 μm long due to state-of-the-art heterogenous integration and an improved material platform.




Hackett, L., Siddiqui, A., Dominguez, D., Douglas, J. K., Tauke-Pedretti, A., Friedmann, T., … Eichenfield, M. (2019). High-gain leaky surface acoustic wave amplifier in epitaxial InGaAs on lithium niobate heterostructure. Applied Physics Letters, 114(25). https://doi.org/10.1063/1.5108724

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free