Aim: To explore the different roles of pancreatic duodenal homeobox factors-1 (PDX-1) domains in PDX-1 mediated repression of human cytomegalovirus immediately early (CMV IE) promoter. Methods: A series of truncated PDX-1 mutants were constructed. The binding of PDX-1 and CMV IE promoter was identified by electrophoretic mobility shift assay (EMSA). The dual-reporter assay was applied to examine the repression activities of PDX-1 mutants on CMV IE promoter. In addition, RNAi technology was used to specifically knock down the endogenous PDX-1 expression. Results: The reporter assay indicated that compared to the mock controls (pEGFP-N2), overexpression of PDX-1 resulted in a 41% decrease of CMV IE promoter activity in the 293 cells (P<0.05) and 43% decrease in HeLa cells (P<0.05), and the repression levels of various truncated mutants played on CMV IE promoter were different. Specific knock down of the endogenous PDX-1 expression significantly restored the activity of CMV IE promoter. EMSA demonstrated that domain 3 is necessary for nuclear localization and DNA binding activity of PDX-1. However, binding of PDX-1 alone to CMV IE promoter was not sufficient to inhibit its transcriptional activity, and other domains of PDX-1 presented were also required. Conclusion: Our data suggested that the DNA binding activity of PDX-1 domain 3 and the cooperative binding of PDX-1 domain 1/2 with other proteins were required for PDX-1 mediated repression of CMV IE promoter. © 2006 CPS and SIMM.
CITATION STYLE
Chen, J., Chen, L., Li, G., Cheng, L., Huang, Y., Zhang, J. X., … Lu, D. R. (2006). Amino acid 1-209 is essential for PDX-1-mediated repression of human CMV IE promoter activity. Acta Pharmacologica Sinica, 27(11), 1495–1503. https://doi.org/10.1111/j.1745-7254.2006.00420.x
Mendeley helps you to discover research relevant for your work.