Dams and diversions are a primary threat to freshwater fish biodiversity, including the loss of species and restructuring of communities, often resulting in taxonomic homogenization (increased similarity) over time. Mitigating these impacts requires a strong scientific understanding of both patterns and drivers of fish diversity. Here, we test whether different components of fish biodiversity have changed in response to major dam construction, and whether these patterns are predictable as a function of key environmental factors in the Gan River Basin, China. The results showed that total and native species alpha diversity have declined from the historical period (pre-dam) to the current period (post-dam). A total of 29 native species are lost, while 6 alien species were gained over time. We found evidence for fish faunal homogenization in the Gan River Basin, with a slight (1%) increase in taxonomic similarity among river basins from the historical period to the current period. Additionally, we revealed significant associations between drainage length, drainage area, and average air temperature, and alpha and beta fish diversity. This study provides new insight into the patterns and drivers of fish biodiversity change in the broader Yangtze River Basin and helps inform management efforts seeking to slow, and even reverse, current trajectories of biodiversity change.
CITATION STYLE
Liu, X., Olden, J. D., Wu, R., Ouyang, S., & Wu, X. (2022). Dam Construction Impacts Fish Biodiversity in a Subtropical River Network, China. Diversity, 14(6). https://doi.org/10.3390/d14060476
Mendeley helps you to discover research relevant for your work.