Clostridium cellulovorans DSM 743B offers potential as a chassis strain for biomass refining by consolidated bioprocessing (CBP). However, its n-butanol production from lignocellulosic biomass has yet to be demonstrated. This study demonstrates the construction of a coenzyme A (CoA)-dependent acetone-butanolethanol (ABE) pathway in C. cellulovorans by introducing adhE1 and ctfA-ctfB-adc genes from Clostridium acetobutylicum ATCC 824, which enabled it to produce n-butanol using the abundant and low-cost agricultural waste of alkali-extracted, deshelled corn cobs (AECC) as the sole carbon source. Then, a novel adaptive laboratory evolution (ALE) approach was adapted to strengthen the n-butanol tolerance of C. cellulovorans to fully utilize its n-butanol output potential. To further improve n-butanol production, both metabolic engineering and evolutionary engineering were combined, using the evolved strain as a host for metabolic engineering. The n-butanol production from AECC of the engineered C. cellulovorans was increased 138-fold, from less than 0.025 g/liter to 3.47 g/liter. This method represents a milestone toward n-butanol production by CBP, using a single recombinant clostridium strain. The engineered strain offers a promising CBP-enabling microbial chassis for n-butanol fermentation from lignocellulose.
CITATION STYLE
Wen, Z., Ledesma-Amaro, R., Lin, J., Jiang, Y., & Yangd, S. (2019). Improved n-butanol production from clostridium cellulovorans by integrated metabolic and evolutionary engineering. Applied and Environmental Microbiology, 85(7). https://doi.org/10.1128/AEM.02560-18
Mendeley helps you to discover research relevant for your work.