Interactions of GATA-2 with the promyelocytic leukemia zinc finger (PLZF) protein, its homologue FAZF, and the t(11;17)-generated PLZF-retinoic acid receptor alpha oncoprotein

32Citations
Citations of this article
38Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Transcription factor GATA-2 is implicated in the survival and growth of multipotential progenitors. Here we report that the promyelocytic leukemia zinc finger (PLZF) protein can interact with GATA-2 and can modify its transactivation capacity. Fanconi anemia zinc finger (FAZF), a PLZF-homologous protein that has been variously described as ROG (repressor of GATA), and TZFP (testis zinc finger protein) also interact with GATA-2. The zinc finger region of GATA-2 is required for binding to PLZF and FAZF, but distinct interfaces on the PLZF and FAZF molecules mediate the interaction, suggesting that GATA-2 activity is controlled by these 2 homologous proteins through distinct mechanisms. GATA-2 can also physically associate with the PLZF-RARα fusion protein generated by the t(11;17) chromosomal translocation associated with acute promyelocytic leukemia (APL). Functional experiments showed that this interaction has the capacity to render GATA-dependent transcription responsive to treatment with a combination of all-trans retinoic acid and the histone deacetylase inhibitor trichostatin A (TSA). This combination of drugs has been shown to stimulate the terminal differentiation of leukemic t(11;17)-associated APL blasts, raising the possibility that GATA target genes may be involved in the molecular pathogenesis of APL. © 2002 by The American Society of Hematology.

Cite

CITATION STYLE

APA

Tsuzuki, S., & Enver, T. (2002). Interactions of GATA-2 with the promyelocytic leukemia zinc finger (PLZF) protein, its homologue FAZF, and the t(11;17)-generated PLZF-retinoic acid receptor alpha oncoprotein. Blood, 99(9), 3404–3410. https://doi.org/10.1182/blood.V99.9.3404

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free