Babesia microti-group parasites compared phylogenetically by complete sequencing of the CCTη gene in 36 isolates

71Citations
Citations of this article
52Readers
Mendeley users who have this article in their library.

Abstract

Babesia microti, the erythroparasitic cause of human babesiosis, has long been taken to be a single species because classification by parasite morphology and host spectrum blurred distinctions between the parasites. Phylogenetic analyses of the 18S ribosomal RNA gene (18S rDNA) and, more recently, the β-tubulin gene have suggested inter-group heterogeneity. Intra-group relationships, however, remain unknown. This study was conducted to clarify the intra- and inter-group phylogenetic features of the B. microti-group parasites with the η subunit of the chaperonin-containing t-complex polypeptide l (CCTη) gene as a candidate genetic marker for defining the B. microti group. We prepared complete sequences of the CCTη gene from 36 piroplasms and compared the phylogenetic trees. The B. microti-group parasites clustered in a monophyletic assemblage separate from the Babesia sensu stricto and Theileria genera and subdivided predominantly into 4 clades (U.S., Kobe, Hobetsu, Munich) with highly significant evolutionary distances between the clades. B. rodhaini branched at the base of the B. microti-group parasites. In addition, a unique intron presence/absence matrix not observable in 18S rDNA or β-tubulin set the B. microti group entirely apart from either Babesia sensu stricto or Theileria. These results have strong implications for public health, suggesting that the B. microti-group parasites are a full-fledged genus comprising, for now, four core species, i.e., U.S., Kobe, Hobetsu, and Munich species nova. Furthermore, the CCTη gene is an instructive and definitive genetic marker for analyzing B. microti and related parasites.

Cite

CITATION STYLE

APA

Nakajima, R., Tsuji, M., Oda, K., Zamoto-Niikura, A., Wei, Q., Kawabuchi-Kurata, T., … Ishihara, C. (2009). Babesia microti-group parasites compared phylogenetically by complete sequencing of the CCTη gene in 36 isolates. Journal of Veterinary Medical Science, 71(1), 55–68. https://doi.org/10.1292/jvms.71.55

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free