Improving the accuracy of a hygrothermal model for wood-frame walls: A cold-climate study

6Citations
Citations of this article
17Readers
Mendeley users who have this article in their library.

Abstract

A one-dimensional transient hygrothermal model was used to simulate eight different wood-frame wall assemblies. Simulations were compared with measured results from a two-year field study exploring the effects of exterior insulation on wall moisture performance in a cold-climate. The field study documented the moisture content, temperature, and relative humidity measurements in wall assemblies using oriented strand board (OSB) sheathing. Simulations were performed using generic design input values as well as input values based on measurements or sensitivity analysis. Laboratory material property measurements informed the choice of material property values in the improved model for OSB, asphalt-coated kraft paper, and interior latex paint. Simulations using improved input values typically agreed with field measurements within measurement error. The most significant model improvements were all related to vapor permeance. The vinyl siding used an effective permeance much lower than typically recommended. However, both the extruded polystyrene insulation and the asphalt-coated kraft paper facing on the cavity fiberglass insulation had higher permeance than literature values.

Cite

CITATION STYLE

APA

Boardman, C. R., & Glass, S. V. (2020). Improving the accuracy of a hygrothermal model for wood-frame walls: A cold-climate study. Buildings, 10(12), 1–34. https://doi.org/10.3390/buildings10120236

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free