Machine learning for acute kidney injury: Changing the traditional disease prediction mode

12Citations
Citations of this article
26Readers
Mendeley users who have this article in their library.

Abstract

Acute kidney injury (AKI) is a serious clinical comorbidity with clear short-term and long-term prognostic implications for inpatients. The diversity of risk factors for AKI has been recognized in previous studies, and a series of predictive models have been developed using traditional statistical methods in conjunction with its preventability, but they have failed to meet the expectations in limited clinical applications, the rapid spread of electronic health records and artificial intelligence machine learning technology has brought new hope for the construction of AKI prediction models. In this article, we systematically review the definition and classification of machine learning methods, modeling ideas and evaluation methods, and the characteristics and current status of modeling studies. According to the modeling objectives, we subdivided them into critical care medical setting models, all medical environment models, special surgery models, special disease models, and special nephrotoxin exposure models. As the first review article to comprehensively summarize and analyze machine learning prediction models for AKI, we aim to objectively describe the advantages and disadvantages of machine learning approaches to modeling, and help other researchers more quickly and intuitively understand the current status of modeling research, inspire ideas and learn from experience, so as to guide and stimulate more research and more in-depth exploration in the future, which will ultimately provide greater help to improve the overall status of AKI diagnosis and treatment.

Cite

CITATION STYLE

APA

Yu, X., Ji, Y., Huang, M., & Feng, Z. (2023, February 3). Machine learning for acute kidney injury: Changing the traditional disease prediction mode. Frontiers in Medicine. Frontiers Media S.A. https://doi.org/10.3389/fmed.2023.1050255

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free