One of the major issues for semidistributed models is calibration of sensitive parameters. This study compared 3 scenarios for Soil and Water Assessment Tool (SWAT) model for calibration and uncertainty. Roodan watershed has been selected for simulation of daily flow in southern part of Iran with an area of 10 570 km2. After preparation of required data and implementation of the SWAT model, sensitivity analysis has been performed by Latin Hypercube One-factor-At-a-Time method on those parameters which are effective for flow simulation. Then, SWAT Calibration and Uncertainty Program (SWAT-CUP) has been used for calibration and uncertainty analysis. Three schemes for calibration were followed for the Roodan watershed modeling in calibration analysis as evolution. These include the following: the global method (scheme 1), this is a method that takes in all globally adjusted sensitive parameters for the whole watershed; the discretization method (scheme 2), this method considered the dominant features in calibration such as land use and soil type; the optimum parameters method (scheme 3), this method only adjusted those sensitive parameters by considering the effectiveness of their features. The results show that scheme 3 has better performance criteria for calibration and uncertainty analysis. Nash-Sutcliffe (NS) coefficient has been obtained 0.75 for scheme 3. However, schemes 1 and 2 resulted in NS 0.71 and 0.74, respectively, between predicted and observed daily flows. Moreover, percentage bias (P-bias) obtained was 6.7, 5.2, and 1.5 for schemes 1, 2, and 3, respectively. The result also shows that condition of parameters (parameter set) during calibration in SWAT-CUP program model has an important role to increase the performance of the model.
CITATION STYLE
Jajarmizadeh, M., Sidek, L. M., Harun, S., & Salarpour, M. (2017). Optimal Calibration and Uncertainty Analysis of SWAT for an Arid Climate. Air, Soil and Water Research, 10. https://doi.org/10.1177/1178622117731792
Mendeley helps you to discover research relevant for your work.