Choroidal Haller's and Sattler's layer thickness measurement using 3-dimensional 1060-nm optical coherence tomography

63Citations
Citations of this article
63Readers
Mendeley users who have this article in their library.

Abstract

Objectives: To examine the feasibility of automatically segmented choroidal vessels in three-dimensional (3D) 1060-nmOCT by testing repeatability in healthy and AMD eyes and by mapping Haller's and Sattler's layer thickness in healthy eyes Methods: Fifty-five eyes (from 45 healthy subjects and 10 with non-neovascular age-related macular degeneration (AMD) subjects) were imaged by 3D-1060-nmOCT over a 36°x36° field of view. Haller's and Sattler's layer were automatically segmented, mapped and averaged across the Early Treatment Diabetic Retinopathy Study grid. For ten AMD eyes and ten healthy eyes, imaging was repeated within the same session and on another day. Outcomes were the repeatability agreement of Haller's and Sattler's layer thicknesses in healthy and AMD eyes, the validation with ICGA and the statistical analysis of the effect of age and axial eye length (AL) on both healthy choroidalsublayers. Results: The coefficients of repeatability for Sattler's and Haller's layers were 35% and 21% in healthy eyes and 44% and 31% in AMD eyes, respectively. The mean±SD healthy central submacular field thickness for Sattler's and Haller's was 87656 mm and 141±50 μm, respectively, with a significant relationship for AL (P

Cite

CITATION STYLE

APA

Esmaeelpour, M., Kajic, V., Zabihian, B., Othara, R., Ansari-Shahrezaei, S., Kellner, L., … Binder, S. (2014). Choroidal Haller’s and Sattler’s layer thickness measurement using 3-dimensional 1060-nm optical coherence tomography. PLoS ONE, 9(6). https://doi.org/10.1371/journal.pone.0099690

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free