A novel screen-printing fabrication method was used to prepare organic electrochemical transistors (OECTs) based on poly(3,4-ethylenedioxythiophene) doped with polysterene sulfonate (PEDOT:PSS). Initially, three types of these screen-printed OECTs with a different channel and gate areas ratio were compared in terms of output characteristics, transfer characteristics, and current modulation in a phosphate buffered saline (PBS) solution. Results confirm that transistors with a gate electrode larger than the channel exhibit higher modulation. OECTs with this geometry were therefore chosen to investigate their ion-sensitive properties in aqueous solutions of cations of different sizes (sodium and rhodamine B). The effect of the gate electrode was additionally studied by comparing these all-PEDOT:PSS transistors with OECTs with the same geometry but with a non-polarizable metal gate (Ag). The operation of the all-PEDOT:PSS OECTs yields a response that is not dependent on a Na+ or rhodamine concentration. The weak modulation of these transistors can be explained assuming that PEDOT:PSS behaves like a supercapacitor. In contrast, the operation of Ag-Gate OECTs yields a response that is dependent on ion concentration due to the redox reaction taking place at the gate electrode with Cl- counter-ions. This indicates that, for cation detection, the response is maximized in OECTs with non-polarizable gate electrodes.
CITATION STYLE
Contat-Rodrig, L., Pérez-Fuster, C., Lidón-Roger, J. V., Bonfiglio, A., & García-Breijo, E. (2016). Characterization of screen-printed organic electrochemical transistors to detect cations of different sizes. Sensors (Switzerland), 16(10). https://doi.org/10.3390/s16101599
Mendeley helps you to discover research relevant for your work.