Methylomonas sp. DH-1, newly isolated from the activated sludge of a brewery plant, has been used as a promising biocatalytic platform for the conversion of methane to value-added chemicals. Methylomonas sp. DH-1 can efficiently convert methane and propane into methanol and acetone with a specific productivity of 4.31 and 0.14 mmol/g cell/h, the highest values ever reported, respectively. Here, we present the complete genome sequence of Methylomonas sp. DH-1 which consists of a 4.86 Mb chromosome and a 278 kb plasmid. The existence of a set of genes related to one-carbon metabolism and various secondary metabolite biosynthetic pathways including carotenoid pathways were identified. Interestingly, Methylomonas sp. DH-1 possesses not only the genes of the ribulose monophosphate cycle for type I methanotrophs but also the genes of the serine cycle for type II. Methylomonas sp. DH-1 accumulated 80 mM succinate from methane under aerobic conditions, because DH-1 has 2-oxoglutarate dehydrogenase activity and the ability to operate the full TCA cycle. Availability of the complete genome sequence of Methylomonas sp. DH-1 enables further investigations on the metabolic engineering of this strain for the production of value-added chemicals from methane.
CITATION STYLE
Nguyen, A. D., Hwang, I. Y., Lee, O. K., Hur, D. H., Jeon, Y. C., Hadiyati, S., … Lee, E. Y. (2018). Functional analysis of Methylomonas sp. DH-1 genome as a promising biocatalyst for bioconversion of methane to valuable chemicals. Catalysts, 8(3). https://doi.org/10.3390/catal8030117
Mendeley helps you to discover research relevant for your work.