The ratio of plant transpiration to total terrestrial evapotranspiration (T/ET) captures the role of vegetation in surface-atmosphere interactions. However, several studies have documented a large variability in T/ET. In this paper, we present a new T/ET dataset (also including transpiration, evapotranspiration data) for China from 1981 to 2015 with spatial and temporal resolutions of 0.05° and 8 days, respectively. The T/ET dataset is based on a model-data fusion method that integrates the Priestley-Taylor Jet Propulsion Laboratory (PT-JPL) model with multivariate observational datasets (transpiration and evapotranspiration). The dataset is driven by satellite-based leaf area index (LAI) data from GLASS and GLOBMAP, and climate data from the Chinese Ecosystem Research Network (CERN). Observational annual T/ET were used to validate the model, with R2 and RMSE values were 0.73 and 0.07 (12.41%), respectively. The dataset provides significant insight into T/ET and its changes over the Chinese terrestrial ecosystem and will be beneficial for understanding the hydrological cycle and energy budgets between the land and the atmosphere.
CITATION STYLE
Niu, Z., He, H., Zhu, G., Ren, X., Zhang, L., & Zhang, K. (2020). A spatial-temporal continuous dataset of the transpiration to evapotranspiration ratio in China from 1981–2015. Scientific Data, 7(1). https://doi.org/10.1038/s41597-020-00693-x
Mendeley helps you to discover research relevant for your work.