Shipboard measurements of offshore oil and gas facilities were conducted in the Gulf of Mexico in February 2018. Species measured at 1 s include methane, ethane, carbon-13 (13C) and deuterium (D) isotopes of methane, and several combustion tracers. Significant variability in the emission composition is observed between individual sites, with typical ethane/methane ratios around 5.3% and 13C and D methane isotopic compositions around-40 and-240‰, respectively. Offshore plumes were spatially narrower than expectations of the plume width based on terrestrial atmospheric stability classes; a modified Gaussian dispersion methodology using empirically measured horizontal plume widths was used to estimate the emission rates. A total of 103 sites were studied, including shallow and deepwater offshore platforms and drillships. Methane emission rates range from 0 to 190 kg/h with 95% confidence limits estimated at a factor of 10. The observed distribution is skewed with the top two emitters accounting for 20% of the total methane emissions of all sampled sites. Despite the greater throughput of the deepwater facilities, they had moderate emission rates compared to shallow-water sites. Analysis of background ethane enhancements also suggests a source region in shallow waters. A complete 1 s measurement database is published for use in future studies of offshore dispersion.
CITATION STYLE
Yacovitch, T. I., Daube, C., & Herndon, S. C. (2020). Methane Emissions from Offshore Oil and Gas Platforms in the Gulf of Mexico. Environmental Science and Technology, 54(6), 3530–3538. https://doi.org/10.1021/acs.est.9b07148
Mendeley helps you to discover research relevant for your work.