Closure relations for shallow granular flows from particle simulations

93Citations
Citations of this article
88Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The discrete particle method (DPM) is used to model granular flows down an inclined chute with varying basal roughness, thickness and inclination. We observe three major regimes: arresting flows, steady uniform flows and accelerating flows. For flows over a smooth base, other (quasi-steady) regimes are observed: for small inclinations the flow can be highly energetic and strongly layered in depth; whereas, for large inclinations it can be non-uniform and oscillating. For steady uniform flows, depth profiles of density, velocity and stress are obtained using an improved coarse-graining method, which provides accurate statistics even at the base of the flow. A shallow-layer model for granular flows is completed with macro-scale closure relations obtained frommicro-scale DPM simulations of steady flows. We obtain functional relations for effective basal friction, velocity shape factor, mean density, and the normal stress anisotropy as functions of layer thickness, flow velocity and basal roughness. © The Author(s) 2012.

Cite

CITATION STYLE

APA

Weinhart, T., Thornton, A. R., Luding, S., & Bokhove, O. (2012). Closure relations for shallow granular flows from particle simulations. Granular Matter, 14(4), 531–552. https://doi.org/10.1007/s10035-012-0355-y

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free