The exponential increase in production and consumption of plastic has led to accumulation of plastic waste in the environment, resulting in detrimental impacts on human health and the natural environment. Plastic pollution not only stems from discarded plastics but also from the chemicals released during plastic production and decomposition. Various waste management strategies exist for plastic waste, including landfilling, recycling, conversion to liquid fuel, and upcycling. Landfilling, which is a prevalent method, contributes to long-term environmental degradation. Recycling is practiced worldwide, but its percentage remains low, particularly in regions like South Asia. Conversion to liquid fuel through pyrolysis has been explored as a viable solution, although commercialization faces challenges. Upcycling, which involves depolymerization and repolymerization, offers an avenue to recycle plastic waste into valuable chemicals, specifically focusing on high-density polyethylene (HDPE) and low-density polyethylene (LDPE). Currently, HDPE and LDPE make up 36% of all plastic trash by mass, but they have the potential to account for far more. When plastic waste is incinerated or buried in the earth, it generates carbon dioxide and heat, which pollute our environment. Depolymerization is a way to chemically recycle plastic waste into monomers, but this process requires a large amount of energy. Controlled partial depolymerization can transform PE into new, high-quality products at a temperature of more than 400 °C with or without a catalyst. In this study, we provide a novel approach for the conversion of plastic waste, particularly HDPE and LDPE, into valuable alkyl aromatics. By implementing controlled partial depolymerization, we propose a plant design capable of transforming plastic waste into high-quality chemicals. The design aims to optimize energy consumption, process efficiency, and product quality. The research findings contribute to sustainable plastic waste management and the reduction in environmental pollution caused by plastic waste.
CITATION STYLE
Alali, S. A. S., Aldaihani, M. K. M. B. J., & Alanezi, K. M. (2023). Plant Design for the Conversion of Plastic Waste into Valuable Chemicals (Alkyl Aromatics). Applied Sciences (Switzerland), 13(16). https://doi.org/10.3390/app13169221
Mendeley helps you to discover research relevant for your work.