Defects on a solid wood board have a great influence on the aesthetics and mechanical properties of the board. After removing the defects, the board is no longer the standard size; manual drawing lines and cutting procedure is time-consuming and laborious; and an optimal solution is not necessarily obtained. Intelligent cutting of the board can be realized using a genetic algorithm. However, the global optimal solution of the whole machining process cannot be obtained by separately considering the sawing and splicing of raw materials. The integrated consideration of wood board cutting and board splicing can improve the utilization rate of the solid wood board. The effective utilization rate of the board with isolated consideration of raw material sawing with standardized dimensions of wood pieces and board splicing is 79.1%, while the shortcut splicing optimization with non-standardized dimensions for the final board has a utilization rate of 88.6% (which improves the utilization rate by 9.5%). In large-scale planning, the use of shortcut splicing optimization also increased the utilization rate by 12.14%. This has certain guiding significance for actual production.
CITATION STYLE
Yang, Y., Zhuang, Z., & Yu, Y. (2022). Defect removal and rearrangement of wood board based on genetic algorithm. Forests, 13(1). https://doi.org/10.3390/f13010026
Mendeley helps you to discover research relevant for your work.