Antibacterial Activity and Mechanism of Three Root Exudates from Mulberry Seedlings against Ralstonia pseudosolanacearum

0Citations
Citations of this article
15Readers
Mendeley users who have this article in their library.

Abstract

Bacterial wilt is a significant soil-borne disease that poses a threat to mulberry production yield and quality of agricultural production worldwide. However, the disease resistance mechanisms dependent on root exudates are not well understood. In this present study, we investigated the antibacterial mechanisms of the main active substances (erucamide, oleamide, and camphor bromide) present in mulberry root exudates (MRE) against Ralstonia pseudosolanacearum (Rp), the causal agent of bacterial wilt. Our findings revealed that these three active substances inhibited the growth activity of Rp by affecting the cell morphology and extracellular polysaccharide content, as well as triggering a burst of reactive oxygen species. The active substances induced oxidative stress, leading to a decrease in Rp growth. Additionally, the expression levels of key genes in the hrp gene cluster (hrpB, hrpX, and hrpF) and other virulence-related genes (such as ripAW, ripAE, Rs5-4819, Rs5-4374, ace, egl3, and pehB) were significantly reduced upon treatment with the active substances. Further pathogenicity experiments demonstrated that root exudates (at a concentration of 1.5 mg·mL−1) delayed or slowed down the occurrence of bacterial wilt in mulberry. These findings provide valuable insight into the antimicrobial mechanisms of MRE against Rp and lay a theoretical foundation for the development and application of biocontrol agents to control mulberry bacterial wilt.

Cite

CITATION STYLE

APA

Li, P., Wang, S., Liu, M., Dai, X., Shi, H., Zhou, W., … Wu, F. (2024). Antibacterial Activity and Mechanism of Three Root Exudates from Mulberry Seedlings against Ralstonia pseudosolanacearum. Plants, 13(4). https://doi.org/10.3390/plants13040482

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free