Decreased expression of vitamin d receptor affects an immune response in primary biliary cholangitis via the vdr-mirna155-socs1 pathway

59Citations
Citations of this article
27Readers
Mendeley users who have this article in their library.

Abstract

Primary biliary cholangitis (PBC) is an immune-mediated cholestatic disease. Vitamin D receptor (VDR)-dependent signaling constrains an inflammatory response by targeting the miRNA155-SOCS1 (suppressor of cytokine signaling 1) axis. The VDR-miRNA155-SOCS1 pathway was investigated in the context of the autoimmune response associated with PBC. Human liver tissues from non-cirrhotic PBC (n = 22), cirrhotic PBC (n = 22), cirrhotic primary sclerosing cholangitis (PSC, n=13), controls (n = 23), and peripheral blood mononuclear cells (PBMC) obtained from PBC (n = 16) and PSC (n = 10) patients and healthy subjects (n = 11) were used for molecular analyses. VDR mRNA and protein expressions were substantially reduced in PBC livers (51% and 59%, respectively). Correspondingly, the decrease of SOCS1 protein expression in PBC livers, after normalization to a marker of lymphocytes and forkhead family transcriptional regulator box P3 (FOXP3, marker of Treg), was observed, and this phenomenon was accompanied by enhanced miRNA155 expression. In PSC livers, protein expressions of VDR and SOCS1 were comparable to the controls. However, in PBM cells, protein expressions of VDR and SOCS1 were considerably decreased in both PBC and PSC. We demonstrated that VDR/miRNA155-modulated SOCS1 expression is decreased in PBC which may lead to insufficient negative regulation of cytokine signaling. These findings suggest that the decreased VDR signaling in PBC could be of importance in the pathogenesis of PBC.

Cite

CITATION STYLE

APA

Kempinska-Podhorodecka, A., Milkiewicz, M., Wasik, U., Ligocka, J., Zawadzki, M., Krawczyk, M., & Milkiewicz, P. (2017). Decreased expression of vitamin d receptor affects an immune response in primary biliary cholangitis via the vdr-mirna155-socs1 pathway. International Journal of Molecular Sciences, 18(2). https://doi.org/10.3390/ijms18020289

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free