Colonic epithelial HT29-cl19A cells are polarized and secrete proteins among which α1-antitrypsin represents about 95%. Secretion occurs via a constitutive pathway, so that the rates of secretion directly reflect the rates of protein transit. In this paper we have demonstrated that: 1) in resting cells phospholipase D (PLD) is implicated in the control of apical protein transit; 2) phorbol esters stimulate apical protein transit (stimulation factor 2.2), which is correlated with a PLD-catalyzed production of phosphatidic acid (PA) (2.45-fold increase); 3) the stimulation of cholinergic receptors by carbachol results in an increase (stimulation factor 1.45) of apical protein transit which is independent of protein kinase C and PLD activities, but related to PA formation (1.7-fold increase) via phospholipase(s) C and diacylglycerol kinase activation; 4) an elevation of the cAMP level enhances apical protein transit by a PA-independent mechanism; 5) a trans-Golgi network or post-trans-Golgi network step of the transit is the target for the regulatory events. In conclusion, we have shown that PA can be produced by two independent signaling pathways; whatever the pathway followed, a close relationship between the amount of PA and the level of secretion was observed.
CITATION STYLE
Auger, R., Robin, P., Camier, B., Vial, G., Rossignol, B., Tenu, J. P., & Raymond, M. N. (1999). Relationship between phosphatidic acid level and regulation of protein transit in colonic epithelial cell line HT29-cl19A. Journal of Biological Chemistry, 274(40), 28652–28359. https://doi.org/10.1074/jbc.274.40.28652
Mendeley helps you to discover research relevant for your work.