6-Hydroxydopamine (6-OHDA) is known to contribute to neuronal death in Parkinson's disease. In this study, we found that the preincubation of SH-SY5Y cells for 24 h with 20 M notoginsenoside R2 (NGR2), which is a newly isolated notoginsenoside from Panax notoginseng, showed neuroprotective effects against 6-OHDA-induced oxidative stress and apoptosis. NGR2 incubation successively resulted in the activation of P90RSK, inactivation of BAD, and inhibition of 6-OHDA-induced mitochondrial membrane depolarization, thus preventing the mitochondrial apoptosis pathway. NGR2 incubation also led to the activation of Nrf2 and subsequent activity enhancement of phase II detoxifying enzymes, thus suppressing 6-OHDA-induced oxidative stress, and these effects could be removed by Nrf2 siRNA. We also found that the upstream activators of P90RSK and Nrf2 were the MEK1/2-ERK1/2 pathways but not the JNK, P38, or PI3K/Akt pathways. Interestingly, NGR2 incubation could also activate MEK1/2 and ERK1/2. Most importantly, NGR2-mediated P90RSK and Nrf2 activation, respective downstream target activation, and neuroprotection were reversed by the genetic silencing of MEK1/2 and ERK1/2 by using siRNA and PD98059 application. These results suggested that the neuroprotection elicited by NGR2 against 6-OHDA-induced neurotoxicity was associated with NGR2-mediated P90RSK and Nrf2 activation through MEK1/2-ERK1/2 pathways. © 2013 Xiang-Bao Meng et al.
CITATION STYLE
Meng, X. B., Sun, G. B., Wang, M., Sun, J., Qin, M., & Sun, X. B. (2013). P90RSK and Nrf2 activation via MEK1/2-ERK1/2 pathways mediated by notoginsenoside R2 to prevent 6-hydroxydopamine-induced apoptotic death in SH-SY5Y cells. Evidence-Based Complementary and Alternative Medicine, 2013. https://doi.org/10.1155/2013/971712
Mendeley helps you to discover research relevant for your work.