A versatile laser-induced porcine model of outer retinal and choroidal degeneration for preclinical testing

1Citations
Citations of this article
12Readers
Mendeley users who have this article in their library.

Abstract

Over 30 million people worldwide suffer from untreatable vision loss and blindness associated with childhood-onset and age-related eye diseases caused by photoreceptor (PR), retinal pigment epithelium (RPE), and choriocapillaris (CC) degeneration. Recent work suggests that RPE-based cell therapy may slow down vision loss in late stages of age-related macular degeneration (AMD), a polygenic disease induced by RPE atrophy. However, accelerated development of effective cell therapies is hampered by the lack of large-animal models that allow testing safety and efficacy of clinical doses covering the human macula (20 mm2). We developed a versatile pig model to mimic different types and stages of retinal degeneration. Using an adjustable power micropulse laser, we generated varying degrees of RPE, PR, and CC damage and confirmed the damage by longitudinal analysis of clinically relevant outcomes, including analyses by adaptive optics and optical coherence tomography/angiography, along with automated image analysis. By imparting a tunable yet targeted damage to the porcine CC and visual streak — with a structure similar to the human macula — this model is optimal for testing cell and gene therapies for outer retinal diseases including AMD, retinitis pigmentosa, Stargardt, and choroideremia. The amenability of this model to clinically relevant imaging outcomes will facilitate faster translation to patients.

Cite

CITATION STYLE

APA

Barone, F., Amaral, J., Bunea, I., Farnoodian, M., Gupta, R., Gupta, R., … Bharti, K. (2023). A versatile laser-induced porcine model of outer retinal and choroidal degeneration for preclinical testing. JCI Insight, 8(1). https://doi.org/10.1172/jci.insight.157654

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free