Finite element model for laser welding of titanium

14Citations
Citations of this article
64Readers
Mendeley users who have this article in their library.

Abstract

This paper presents a finite element numerical analysis of the heat transfer in the laser welding process of Ti6Al4V titanium alloy. For sake of validation, 1.5 mm thick butt joints were made using a fiber laser. The finite element calculation of the process was carried out by a parametric design language (APDL) available in the ANSYS finite element code. The numerical modelling was conducted focusing the attention on the model of the laser-material interaction, which allowed to predict the temperature distribution during the thermal cycle and the related phase transformations. The parametric solution was implemented in order to make it suitable for different welding conditions. The numerical model was calibrated both by comparison between the weld transverse cross section of and the thermal cycles detected by thermocouples during welding. Then the simulation was conducted and the evolution of the temperature distribution during the process was calculated. The comparison between experimental and numerical results stressed the evidence of the suitability of the here-presented model for the simulation of the laser welding process of titanium alloys.

Cite

CITATION STYLE

APA

Casalino, G., Contuzzi, N., Minutolo, F. M. C., & Mortello, M. (2015). Finite element model for laser welding of titanium. In Procedia CIRP (Vol. 33, pp. 434–439). Elsevier B.V. https://doi.org/10.1016/j.procir.2015.06.099

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free