Phenotypic developmental plasticity induced by preincubation egg storage in chicken embryos (Gallus gallus domesticus)

Citations of this article
Mendeley users who have this article in their library.


The developing chicken blastoderm can be temporarily maintained in dormancy below physiological zero temperature. However, prolonged preincubation egg storage impairs normal morphological and physiological development of embryos in a potential example of fetal programming (in this case, “embryonic programming”). We investigated how preincubation egg storage conditions (temperature, duration, hypoxia, and hypercapnia) affects viability, body mass, and physiological variables and functions in day 15 chicken embryos. Embryo viability was impaired in eggs stored for 2 and 3 weeks, with the effects greater at 22°C compared to 15°C. However, embryo size was reduced in eggs stored at 15°C compared with 22°C. Phenotypic change resulting from embryonic programming was evident in the fact that preincubation storage at 15°C diminished hematocrit (Hct), red blood cell concentration ([RBC]), and hemoglobin concentration ([Hb]). Storage duration at 15°C more severely affected the time course (2, 6, and 24 h) responses of Hct, [RBC], and [Hb] to progressive hypoxia and hypercapnia induced by submersion compared with storage duration at 22°C. The time-specific regulation of acid–base balance was changed progressively with storage duration at both 22 and 15°C preincubation storages. Consequently, preincubation egg storage at 22°C resulted in poor viability compared with eggs stored at 15°C, but size and physiological functions of embryos in eggs stored for 1–2 weeks were worse in eggs stored in the cooler than stored under room conditions. Avian eggs thus prove to be useful for examining developmental consequences to physiology of altered preincubation thermale environment in very early stages of development (embryonic programming).




Branum, S. R., Tazawa, H., & Burggren, W. W. (2016). Phenotypic developmental plasticity induced by preincubation egg storage in chicken embryos (Gallus gallus domesticus). Physiological Reports, 4(4).

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free