Maternal malnutrition gives rise to both short- and long-term consequences for the survival and health of the offspring. As the intermediary between mother and fetus, the placenta has the potential to interpret environmental signals, such as nutrient availability, and adapt to support fetal growth and development. While this potential is present, it is clear that at times placental adaptation fails to occur resulting in poor pregnancy outcomes. This review will focus on placental responses to maternal undernutrition related to changes in placental vascularization and hemodynamics and placental nutrient transport systems across species. While much of the available literature describes placental responses that result in poor fetal outcomes, novel models have been developed to utilize the inherent variation in fetal weight when dams are nutrient restricted to identify placental adaptations that result in normal-weight offspring. Detailed analyses of the spectrum of placental responses to maternal malnutrition point to alternations in placental histoarchitectural and vascular development, amino acid and lipid transport mechanisms, and modulation of immune-related factors. Dietary supplementation with selected nutrients, such as arginine, has the potential to improve placental growth and function through a variety of mechanisms including stimulating cell proliferation, protein synthesis, angiogenesis, vasodilation, and gene regulation. Improved understanding of placental responses to environmental cues is necessary to develop diagnostic and intervention strategies to improve pregnancy outcomes.
CITATION STYLE
Satterfield, M. C., Edwards, A. K., Bazer, F. W., Dunlap, K. A., Steinhauser, C. B., & Wu, G. (2021, October 1). Placental adaptation to maternal malnutrition. Reproduction. BioScientifica Ltd. https://doi.org/10.1530/REP-21-0179
Mendeley helps you to discover research relevant for your work.