Objective: The aim of the present study was to investigate the effects of basic fibroblast growth factor (bFGF) on the angiogenic properties of extracellular vesicles (EVs) secreted by adipose-derived mesenchymal stem cells (ASCs) in culture. Methods: We isolated EVs from ASC (ASC-EVs) cultured with bFGF (FGF-EVs) or without bFGF (b-EVs). We compared the EV angiogenic action on human microvascular endothelial cells (HMEC) in vitro by capillary- like structure formation assay and in vivo by subcutaneous injection of HMEC-containing Matrigel in SCID mice. We analysed micro-RNA composition of EVs by PCR array and we selected two mi-RNAs changed after bFGF stimulation: miR-223 and miR-21. We transfected HMEC with short antisense anti-miR-223 or with mimic miR- 21 to compensate the action of EVs. Results: In vitro, the total length and the number of branches of vessel-like structures formed by FGF-EV- stimulated HMEC were significantly reduced in respect to b-EV stimulation and the structures were significantly larger than after b-EV stimulation. In vivo, vessels formed by FGF-EV-stimulated HMEC were significantly lower in number in respect to those formed by b-EV-stimulated HMEC, but they were significantly larger in size and contained cells positive for mouse smooth muscle actin. We found that bFGF led to molecular changes in ASC- EVs characterized by decreased expression of angiogenic factors. Moreover, bFGF stimulation up-regulated the expression of the anti-angiogenic miR-223 and decreased the level of pro-angiogenic miR-21. The effects of FGF- EVs were antagonized by the inhibition of miR-233 and by the miR-21 mimic Conclusions: The results indicate that culture conditions may modify the pro-angiogenic activity of ASC- derived EVs, changing their protein and RNA contents. In particular, bFGF induces production of EVs that stimulate vessel stabilization rather than an increase in vessel number.
CITATION STYLE
Mazzeo, A. (2014). The Angiogenic Potential of Adipose Mesenchymal Stem Cell-derived Extracellular Vesicles is modulated by Basic Fibroblast Growth Factor. Journal of Stem Cell Research & Therapy, 04(10). https://doi.org/10.4172/2157-7633.1000245
Mendeley helps you to discover research relevant for your work.