Malaria is a significant public health problem and impediment to socioeconomic development in countries of the Greater Mekong Subregion (GMS), which comprises Cambodia, China's Yunnan Province, Lao People's Democratic Republic, Myanmar, Thailand, and Vietnam. Over the past decade, intensified malaria control has greatly reduced the regional malaria burden. Driven by increasing political commitment, motivated by recent achievements in malaria control, and urged by the imminent threat of emerging artemis-inin resistance, the GMS countries have endorsed a regional malaria elimination plan with a goal of eliminating malaria by 2030. However, this ambitious, but laudable, goal faces a daunting array of challenges and requires integrated strategies tailored to the region, which should be based on a mechanistic understanding of the human, parasite, and vector factors sustaining continued malaria transmission along international borders. Malaria epidemiology in the GMS is complex and rapidly evolving. Spatial heterogeneity requires targeted use of the limited resources. Border malaria accounts for continued malaria transmission and represents sources of parasite introduction through porous borders by highly mobile human populations. Asymptomatic infections constitute huge parasite reservoir requiring interventions in time and place to pave the way for malaria elimination. Of the two most predominant malaria parasites, Plasmodium falciparum and P. vivax, the prevalence of the latter is increasing in most member GMS countries. This parasite requires the use of 8-aminoquinoline drugs to prevent relapses from liver hypnozoites, but high prevalence of glucose-6-phosphate dehydrogenase deficiency in the endemic human populations makes it difficult to adopt this treatment regimen. The recent emergence of resistance to artemisinins and partner drugs in P. falciparum has raised both regional and global concerns, and elimination efforts are invariably prioritized against this parasite to avert spread. Moreover, the effectiveness of the two core vector control interventions-insecticide treated nets and indoor residual spraying-has been declining due to insecticide resistance and increased outdoor biting activity of mosquito vectors. These technical challenges , though varying from country to country, require integrated approaches and better understanding of the malaria epidemiology enabling targeted control of the parasites and vectors. Understanding the mechanism and distribution of drug-resistant parasites will allow effective drug treatment and prevent, or slow down, the spread of drug resistance. Coordination among the GMS countries is essential to prevent parasite reintroduction across the international borders to achieve regional malaria elimination.
CITATION STYLE
Cui, L., Cao, Y., Kaewkungwal, J., Khamsiriwatchara, A., Lawpoolsri, S., Soe, T. N., … Sattabongkot, J. (2018). Malaria Elimination in the Greater Mekong Subregion: Challenges and Prospects. In Towards Malaria Elimination - A Leap Forward. InTech. https://doi.org/10.5772/intechopen.76337
Mendeley helps you to discover research relevant for your work.