Release and reception of extracellular ATP by leukocytes plays a critical role in immune responses to infection, injury and cardiovascular disease. Leukocytes of both the innate, adaptive immune and central nervous system express a repertoire of cell surface receptors for ATP (P2X and P2Y receptors) and its metabolites. ATP acts as a damage-associated molecule pattern (DAMP) released by injured or dying cells. Detection of released ATP by neighboring leukocytes initiates inflammation and wound healing. However, recent evidence from our group and others suggests ATP release by leukocytes themselves serves to regulate homeostatic mechanisms and coordinate responses to external pro-inflammatory cues. Examples include the homeostatic control of intracellular calcium and regulation of migratory guidance during chemotactic response to external cues. Though there has been some progress in elucidating ATP release mechanisms of some mammalian cells types, release conduits and coupling signal transduction machinery remain larger elusive for leukocytes. Our recent studies suggest a role for secretory lysosomes in releasing ATP in monocytes. Though poorly defined, targeting ATP release mechanisms in leukocytes have great anti-inflammatory potential. © 2013 Landes Bioscience.
CITATION STYLE
Campwala, H., & Fountain, S. J. (2013). Constitutive and agonist stimulated ATP secretion in leukocytes. Communicative and Integrative Biology, 6(3). https://doi.org/10.4161/cib.23631
Mendeley helps you to discover research relevant for your work.