Machine Fault Diagnosis through Vibration Analysis: Continuous Wavelet Transform with Complex Morlet Wavelet and Time–Frequency RGB Image Recognition via Convolutional Neural Network

13Citations
Citations of this article
11Readers
Mendeley users who have this article in their library.

Abstract

In pursuit of advancing fault diagnosis in electromechanical systems, this research focusses on vibration analysis through innovative techniques. The study unfolds in a structured manner, beginning with an introduction that situates the research question in a broader context, emphasising the critical role of fault diagnosis. Subsequently, the methods section offers a concise summary of the primary techniques employed, highlighting the utilisation of short-time Fourier transform (STFT) and continuous wavelet transform (CWT) for extracting time–frequency components from the signal. The results section succinctly summarises the main findings of the article, showcasing the results of features extraction by CWT and subsequently utilising a convolutional neural network (CNN) for fault diagnosis. The proposed method, named CWTx6-CNN, was compared with the STFTx6-CNN method of the previous stage of the investigation. Visual insights into the time–frequency characteristics of the inertial measurement unit (IMU) data are presented for various operational classes, offering a clear representation of fault-related features. Finally, the conclusion section underscores the advantages of the suggested method, particularly the concentration of single-frequency components for enhanced fault representation. The research demonstrates commendable classification performance, highlighting the efficiency of the suggested approach in real-time scenarios of fault analysis in less than 50 ms. Calculation by CWT with a complex Morlet wavelet of six time–frequency images and combining them into a single colour image took less than 35 ms. In this study, interpretability techniques have been employed to address the imperative need for transparency in intricate neural network models, particularly in the context of the case presented. Notably, techniques such as Grad-CAM (gradient-weighted class activation mapping), occlusion, and LIME (locally interpretable model-agnostic explanation) have proven instrumental in elucidating the inner workings of the model. Through a comparative analysis of the proposed CWTx6-CNN method and the reference STFTx6-CNN method, the application of interpretability techniques, including Grad-CAM, occlusion, and LIME, has played a pivotal role in revealing the distinctive spectral representations of these methodologies.

Cite

CITATION STYLE

APA

Łuczak, D. (2024). Machine Fault Diagnosis through Vibration Analysis: Continuous Wavelet Transform with Complex Morlet Wavelet and Time–Frequency RGB Image Recognition via Convolutional Neural Network. Electronics (Switzerland), 13(2). https://doi.org/10.3390/electronics13020452

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free