Facial Expression Recognition Algorithm Based On KNN Classifier

  • Thakare P
  • Patil P
Citations of this article
Mendeley users who have this article in their library.


-This paper presents the comparison between the methodologies used for human emotion recognition from face images based on textural analysis and KNN classifier. Automatic facial expression recognition (FER) plays an important role in Human Computer Interaction (HCI) systems for measuring people's emotions has dominated psychology by linking expressions to a group of basic emotions (i.e., anger, disgust, fear, happiness, sadness, and surprise).The comparative study of Facial Expression Recognition involves Curvelet transform based Robust Local Binary Pattern (RLBP) and Distinct LBP (DLBP) features and features derived from DLBP and GLCM. The objective of this research is to show that features derived from RLBP with DLBP is superior to the features derived from DLBP and GLCM. To test and evaluate their performance, experiments are performed using Japanese Female Expressions Model (JAFEE) database in both techniques. The comparison chart shows that, the DLBP and RLBP based feature extraction with KNN classifier gives much better accuracy than other existing methods.




Thakare, P. P., & Patil, P. S. (2016). Facial Expression Recognition Algorithm Based On KNN Classifier. IJCSN International Journal of Computer Science and Network, 5(6), 2277–5420. Retrieved from www.IJCSN.org

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free